582 research outputs found

    The interbank market after August 2007: what has changed, and why?

    Get PDF
    The outbreak of the financial crisis coincided with a sharp increase of worldwide interbank interest rates. We analyze the micro and macroeconomic determinants of this phenomenon, finding that before August 2007 interbank rates were insensitive to borrower characteristics, whereas afterwards they became reactive to borrowers’ creditworthiness. At the same time, conditions for large borrowers became relatively more favorable, both before and after the failure of Lehman Brothers. This suggests that banks have become more discerning in their lending, a welcome change, but that moral hazard considerations related to the â€too big to fail†argument should remain a main concern for central banks.Interbank markets, Spreads, Financial crisis

    Do general relativistic effects limit experiments to test the universality of free fall and the weak equivalence principle?

    Get PDF
    The universality of free fall and the weak equivalence principle, which are at the basis of general relativity, have been confirmed to 1 part in 10(13). Space experiments with macroscopic test masses of different composition orbiting Earth inside a low altitude satellite aim to improve this precision by 2 orders of magnitude (with the Microscope satellite launched on April 25, 2016) and up to 4 orders of magnitude (with the Galileo Galilei satellite). At such a high precision, many tiny effects must be taken into account in order to be ruled out as the source of a spurious violation signal. In this work, we investigate the general relativistic effects, including those which involve the rotation of both Earth and the test masses, and show that they are by far too small to be considered even in the most challenging experiment

    METHANE AND CARBON DIOXIDE FLUXES FROM LIMONIUM RESIDUES DECOMPOSITION IN SALTMARSH SOILS: EFFECTS OF TIDE REGIME

    Get PDF
    The flooding regime of saltmarshes strongly affects organic matter mineralisation, representing a unique situation where oxygen diffusion is either impeded by submersion or favoured by retreating water in regular cycles within the same day. Decomposition of Limonium vulgare Mill. residues in saltmarsh soils was evaluated measuring CO2 and CH4 emissions. Four different saltmarshes from the Grado Lagoon (Northern Adriatic Sea) were investigated. Soils were characterised by a similar vegetation (Sarcocornietea class) and similar high coverage of L. vulgare (70-75%) but differed in redox potential, texture and organic carbon content. Hydromorphic conditions were reproduced in mesocosms, and soils were incubated under fully aerobic, fully anaerobic and transient (6 hours cycles) tidal states. Partially decomposed litter (leaves) of L. vulgare was added and decomposition processes were monitored through CO2 and CH4 emissions. Larger CO2 emissions were measured under aerobic conditions, in particular in soil samples with coarse texture. Fully anoxic and tidal regimes showed a similar behaviour. On the contrary, CH4 emissions were less dependent upon flooding, showing only slightly larger values under completely submerged conditions. Larger CH4 emissions have been obtained in fine textured soils. Soil organic matter content also influenced gas emissions: larger values corresponded to higher emissions of both CO2 and CH4

    Dynamical response of the Galileo Galilei on the ground rotor to test the equivalence principle: Theory, simulation, and experiment. II. The rejection of common mode forces

    Get PDF
    "Galileo Galilei on the ground" (GGG) is a fast rotating differential accelerometer designed to test the equivalence principle (EP). Its sensitivity to differential effects, such as the effect of an EP violation, depends crucially on the capability of the accelerometer to reject all effects acting in common mode. By applying the theoretical and simulation methods reported in Part I of this work, and tested therein against experimental data, we predict the occurrence of an enhanced common mode rejection of the GGG accelerometer. We demonstrate that the best rejection of common mode disturbances can be tuned in a controlled way by varying the spin frequency of the GGG rotor. (c) 2006 American Institute of Physics

    Vibrational Stabilization of Cluster Synchronization in Oscillator Networks

    Full text link
    Cluster synchronization is of paramount importance for the normal functioning of numerous technological and natural systems. Deviations from normal cluster synchronization patterns are closely associated with various malfunctions, such as neurological disorders in the brain. Therefore, it is crucial to restore normal system functions by stabilizing the appropriate cluster synchronization patterns. Most existing studies focus on designing controllers based on state measurements to achieve system stabilization. However, in many real-world scenarios, measuring system states, such as neuronal activity in the brain, poses significant challenges, rendering the stabilization of such systems difficult. To overcome this challenge, in this paper, we employ an open-loop control strategy, vibrational control, which does not requires any state measurements. We establish some sufficient conditions under which vibrational inputs stabilize cluster synchronization. Further, we provide a tractable approach to design vibrational control. Finally, numerical experiments are conducted to demonstrate our theoretical findings.Comment: Submitted to Open Journal of Control System

    Effects of Long Term Hg Contamination on Soil Mercury Speciation and Soil Biological Activities.

    Get PDF
    The suspended matter discharged by the Isonzo river has carried over, for centuries, heavily contaminated mine spoils from the Idrija mercury mining site (Slovenija). A frequently flooded area at the confluence of the Isonzo and Torre rivers was chosen for a preliminary study on the effects of long term mercury pollution on soil biological activities, Hg speciation and plant bioavailability. Soil mercury contamination reached up to about 80 \ub5g g-1 near the banks of Isonzo river and decreased down to about 0.2 \ub5g g-1 near the Torre river, with the predominance of mercuric sulfide and elemental mercury. Soil microbial biomass was not adversely affected by Hg contamination as most soil biological activities, with the exception of arylsulphatase and acid phosphatase, which showed significant negative trends against total mercury and its fractions. Two plant genres (Arum spp. and Rubus spp.) were collected in four different places: Rubus spp. showed the largest uptake capacity of mercury (about 1 \ub5g g-1). Long term mercury contamination does not seem to constitute a stressing factor for soil biological activities but remains nevertheless a concern for its transfer through the food chain

    The complexity of soil biological sustainability

    Get PDF
    Additions of organic amendments to soil not only compensate for decreased soil C, but also contribute to energy requirements for conserving biological activity levels. The soil microbial biomass displays some highly conserved, and possibly unique, characteristics that do not permit a classic interpretation of microbial metabolic parameter data. The resilience of soil microbial biomass and the role of soil organic matter in sustaining microbial biomass under practically zero C inputs were assessed in two long term incubation experiments using soils from the Broadbalk experiment at Rothamsted (UK). Soils with low organic C contents, showed the greatest decline in biomass C during the first 30 d of incubation. The ATP concentration of this rapidly declining microbial biomass did not change during the prolonged incubation period, confirming this peculiar character of the soil microbial biomass. Specific respiration rate did not depend upon substrate availability, being higher in soils that had received the lowest C inputs. Qualitative and quantitative changes observed in humic fractions suggest that humified soil organic matter is a much more dynamic soil fraction than is normally considered and provides a utilizable energy reserve for soil microorganisms. Carbon levels can be successfully restored in soils through practices such as incorporation of crop residues, re\u2010vegetation and application of manures, biosolids and composts. Some amendments, such as olive mill waste compost, promote incorporation of altered lignin structures, N\u2010containing compounds and carbohydrates into humic acids. The mineral\u2010bound fraction of humic C also increases, after their addition, and contributes to the accumulation of the most inert soil C pools

    Paediatric non-alcoholic fatty liver disease: impact on patients and mothers' quality of life

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) is one of the causes of fatty liver in adults and is currently the primary form of chronic liver disease in children and adolescents. However, the psychological outcome (i.e. the behavioural problems that can in turn be related to psychiatric conditions, like anxiety and mood disorders, or lower quality of life) in children and adolescents suffering of NAFLD has not been extensively explored in the literature. Objectives: The present study aims at evaluating the emotional and behavioural profile in children suffering from NAFLD and the quality of life in their mothers. Patients and Methods: A total of 57 children (18 females/39 males) with NAFLD were compared to 39 age-matched control children (25 females/14 males). All participants were submitted to the following psychological tools to assess behavior, mood, and anxiety: the Multidimensional Anxiety Scale for Children (MASC), the Child Behavior Checklist (CBCL), and the Children's Depression Inventory (CDI). Moreover, the mothers of 40 NAFLD and 39 control children completed the World Health Organization Quality of Life-BREF (WHOQOL-BREF) questionnaire. Results: NAFLD children scored significantly higher as compared to control children in MASC (P = 0.001) and CDI total (P < 0.001) scales. The CBCL also revealed significantly higher scores for NAFLD children in total problems (P = 0.046), internalizing symptoms (P = 0.000) and somatic complaints (P < 0.001). The WHOQOL-BREF revealed significantly lower scores for the mothers of NAFLD children in the overall perception of the quality of life (P < 0.001), and in the "relationships" domain (P = 0.023). Conclusions: Increased emotional and behavioural problems were detected in children with NAFLD as compared to healthy control children, together with an overall decrease in their mothers' quality of life. These results support the idea that these patients may benefit from a psychological intervention, ideally involving both children and parents, whose quality of life is likely negatively affected by this disease

    Soil properties and plant community relationship in a saltmarsh of the Grado and Marano lagoon (northern Italy)

    Get PDF
    7noPurpose: The relationship between soil properties and plant communities was investigated in a saltmarsh of the Grado and Marano lagoon (northern Italy), where hydrology and micromorphology strongly influence the features of the ecosystem. A multidisciplinary approach was used to assess the change of soil properties and plant communities in relation to the submergence of soil. Materials and methods: The plant community and soil profile surveys were both carried out along a transect in six sampling sites of the Gran Chiusa saltmarsh (Grado and Marano lagoon). The morphological and physicochemical parameters of soil profiles were investigated, and soils were classified according to Soil Taxonomy. The concentration of macronutrients in both soils and plants was analysed by inductively coupled plasma-optical emission spectrometry. Cluster and linear discriminant analysis were used to assist the interpretation of the data of plant communities and soil properties, respectively. The bioconcentration factor explored the macronutrient relationship between plant community and soil. Results and discussion: A high, middle and low zone were identified by clustering the different plant communities along the studied transect. Discriminant analysis showed how the increase in soil submergence supported the accumulation of S and Ca content and depletion of Fe and Na. The development of different plant communities was linked to both soil water saturation and to the capacity of halophytes to tolerate anoxic conditions or salinity, by extrusion or bioconcentration strategies. Conclusions: This study demonstrates that tide level plays an important role in the pedological development and chemical transformations along a soil hydrosequence. The micromosaic vegetation pattern may therefore represent a useful index of the hydrological and nutritional status of the underlying soils and could be used to predict changes in coastal ecosystems. © 2016, Springer-Verlag Berlin Heidelberg.openopenVittori Antisari, Livia; Ferronato, Chiara; Pellegrini, Elisa; Boscutti, Francesco; Casolo, Valentino; de Nobili, Maria; Vianello, GilmoVittori Antisari, Livia; Ferronato, Chiara; Pellegrini, Elisa; Boscutti, Francesco; Casolo, Valentino; DE NOBILI, Maria; Vianello, Gilm

    Changes in organic matter composition caused by {EDTA} washing of two soils contaminated with toxic metals

    Get PDF
    Two soils contaminated with potentially toxic metals (PTMs) contrasting in pH and mineralogy were remediated with CaEDTA, and changes in soil organic matter (SOM) composition were investigated. Previous studies showed no significant loss of SOM from CaEDTA-treated soils, but the results of our study reflected significant decreases (from 46 to 49%) in the free fraction of humic acids (HAs). Remediation affected the composition of the free HA fraction via disturbance of intermolecular bonds - an increase in phenolic and aromatic groups with a simultaneous decrease in carbohydrates - which was confirmed by FTIR spectroscopy in both soils. Because non-radical molecules such as carbohydrates were selectively removed, the concentration of free radicals in the free HA fraction increased in acidic soil. The bound fraction of HAs and fulvic acids (FAs) in SOM, which are important due to their stability and the permanent effects they have on the soil's physical properties, remained unchanged in both remediated soils. The effect of soil recultivation was observed only in the excitation emission matrix (EEM) fluorescence spectra of HAs. In terms of SOM, CaEDTA soil washing can be considered moderately conservative; however, the restoration of free humic fractions is likely to be a long-term process
    • …
    corecore